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ABSTRACT

This thesis explores the accuracy and utility of a framework for recognizing a speaker by his
or her voice called the Modular Audio Recognition Framework (MARF). Accuracy was tested
with respect to the MIT Mobile Speaker corpus along three axes: 1) number of training sets per
speaker, 2) testing sample length and 3) environmental noise. Testing showed that the number
of training samples per speaker had little impact on performance. It was also shown that MARF
was successful using testing samples as short as 1000ms. Finally, testing discovered that MARF
had difficulty with testing samples containing significant environmental noise.

An application of MARF, namely a referentially-transparent calling service, is described. Use
of this service is considered for both military and civilian applications, specifically for use by a
Marine platoon or a disaster-response team. Limitations of the service and how it might benefit

from advances in hardware are outlined.
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CHAPTER 1:
Introduction

The roll-out of commercial wireless networks continues to rise worldwide. Growth is espe-
cially vigorous in under-developed countries as wireless communication has been a relatively
cheap alternative to wired infrastructure.[2] With their low cost and quick deployment, it makes
sense to explore the viability of stationary and mobile cellular networks to support applications
beyond the current commercial ones. These applications include tactical military missions as
well as disaster relief and other emergency services. Such missions often are characterized by
relatively-small cellular deployments (on the order of fewer than 100 cell users) compared to
commercial ones. How well suited are commercial cellular technologies and their applications

for these types of missions?

Most smart-phones are equipped with a Global Positioning System (GPS) receiver. We would
like to exploit this capability to locate individuals. But GPS alone is not a reliable indicator of a
person’s location. Suppose Sally is a relief worker in charge of an aid station. Her smart-phone
has a GPS receiver. The receiver provides a geo-coordinate to an application on the device that
in turn transmits it to you, perhaps indirectly through some central repository. The information
you receive is the location of Sally’s phone, not the location of Sally. Sally may be miles away
if the phone was stolen, or worse, in danger and separated from her phone. Relying on GPS
alone may be fine for targeted advertising in the commercial world, but it is unacceptable for

locating relief workers without some way of physically binding them to their devices.

Suppose a Marine platoon (roughly 40 soldiers) is issued smartphones to communicate and
learn the location of each other. The platoon leader receives updates and acknowledgments to
orders. Squad leaders use the devices to coordinate calls for fire. During combat, a smartphone
may become inoperable. It may be necessary to use another member’s smartphone. Smart-
phones may also get switched among users by accident. So the geo-coordinates reported by
these phones may no longer accurately convey the locations of the Marines to whom they were
originally issued. Further, the platoon leader will be unable to reach individuals by name unless

there is some mechanism for updating the identities currently tied to a device.

The preceding examples suggest at least two ways commercial cellular technology might be

improved to support critical missions. The first is dynamic, physical binding of one or more



users to a cellphone. That way if we have the phone’s location, we have the location of its users

as well.

The second way is calling by name. We want to call a user, not a cellphone. If there is a way
to dynamically bind a user to whatever cellphone they are currently using then we can always
reach that user through a mapping of their name to a cell number. This is the function of a
Personal Name System (PNS) analogous to the Domain Name System. Personal name systems
are not new. They have been developed for general personal communications systems such
as the Personal Communication System[3] developed at Stanford in 1998 [4]. Also, a PNS
system is available as an add on for Avaya’s Business Communications Manager PBX. A PNS
is particularly well suited for small missions since these missions tend to have relatively small
name spaces and fewer collisions among names. A PNS setup within the scope of this thesis is

discussed in Chapter 4.

Another advantage of a PNS is that we are not limited to calling a person by their name but
instead can use an alias. For example, alias AidStationBravo can map to Sally. Now should
something happen to Sally, the alias could be quickly updated with her replacement without
having to remember the change in leadership at that station. Moreover with such a system,
broadcast groups can easily be implemented. We might have AidStationBravo maps to Sally
and Sue, or even nest aliases as in AllAidStations maps to AidStationBravo and AidStationAlpha.
Such aliasing is also very beneficial in the military setting where an individual can be contacted
by a pseudonym rather than a device number. All members of a squad can be reached by the

squad’s name and so on.

The key to the improvements mentioned above is technology that allows us to passively and

dynamically bind an identity to a cellphone. Biometrics serves this purpose.

1.1 Biometrics

Humans rely on biometrics to authenticate each other. Whether we meet in person or converse
by phone, our brain distills the different elements of biology available to us (hair color, eye
color, facial structure, vocal cord width and resonance, etc.) in order to authenticate a person’s
identity. Capturing, or “reading,” biometric data is the process of capturing information about
a biological attribute of a person. This attribute is used to create measurable data that can be
used to derive unique properties of a person that is stable and repeatable over time and over

variations in acquisition conditions. [5]



Use of biometrics has key advantages:

e Biometric is always with the user, there is no hardware to lose.
o Authentication may be accomplished with little or no input from the user.

e There is no password or sequence for the operator to forget or misuse.

What type of biometric is appropriate for binding a user to a cell phone? It would seem that
a fingerprint reader might be ideal. After all, we are talking on a hand-held device. However,
users often wear gloves, latex or otherwise. It would be an inconvenience to remove one’s
gloves every time they needed to authenticate to the device. Dirt, dust, and sweat can foul up
a fingerprint scanner. Further, the scanner most likely would have to be an additional piece of

hardware installed on the mobile device.

Fortunately, there are other types of biometrics available to authenticate users. Iris scanning is
the most promising since the iris “is a protected internal organ of the eye, behind the cornea
and the aqueous humour, it is immune to the environment except for its pupillary reflex to light.
The deformations of the iris that occur with pupillary dilation are reversible by a well defined
mathematical transform[6]”. Accurate readings of the iris can be taken from one meter away.
This would be a perfect biometric for people working in many different environments under
diverse lighting conditions; from pitch black to searing sun. With a quick “snap-shot” of the
eye we can identify our user. But how would this be installed in the device? Many smart-
phones have cameras, but are they high enough quality to sample the eye? Even if the cameras
are adequate, one still has to stop what they are doing to look into a camera. This is not as

passive as we would like.

Work has been done on the use of body chemistry as a type of biometric. This can take into
account things like body odor and body pH levels. This technology is promising as it could
allow passive monitoring of the user while the device is worn. The drawback is this technology
is still in the experimentation stage. There has been, to date, no actual system built to “smell”
human body odor. The monitoring of pH is farther along and already in use in some medical
devices, but these technologies still have yet to be used in the field of user identification. Even
if the technology existed, how could it be deployed on a mobile device? It is reasonable to

assume that a smart-phone will have a camera, it is quite another thing to assume it will have



an artificial “nose.” Use of these technologies would only compound the problem. While they

would be passive, they would add another piece of hardware into the chain.

None of the biometrics discussed so far meets our needs. They either can be foiled too easily,
require additional hardware or are not as passive as they should be. There is an alternative that
seems promising: speech. Speech is a passive biometric that naturally fits a cellphone. It does
not require any additional hardware. One should not confuse speech with speech recognition
which has had limited success in situations where there is significant ambient noise. Speech
recognition is an attempt to understand what was spoken. Speech is merely sound that we wish

to analyze and attribute to a speaker. This is called speaker recognition.

1.2 Speaker Recognition

Speaker recognition is the problem of analyzing a testing sample of audio and attributing it to
a speaker. The attribution requires that a set of training samples be gathered before submitting
testing samples for analysis. It is the training samples against which the analysis is done. A
variant of this problem is called open-set speaker recognition. In this problem, analysis is done
on a testing sample from a speaker for whom there are no training samples. In this case, the
analysis should conclude the testing sample comes from an unknown speaker. This tends to be

harder than closed-set recognition.

There are some limitations to overcome before speaker recognition becomes a viable way to
bind users to cellphones. First, current implementations of speaker recognition degrade sub-
stantially as we increase the number of users for whom training samples have been taken. This
increase in samples increases the confusion in discriminating among the registered speaker
voices. In addition, this growth also increases the difficulty in confidently declaring a test utter-

ance as belonging to or not belonging to the initially nominated registered speaker[7].

Question. Is population size a problem for our missions? For relatively small training sets, on

the order of 40-50 people, is the accuracy of speaker recognition acceptable?

Speaker recognition is also susceptible to environmental variables. Using the latest feature
extraction technique (MFCC explained in the next chapter) one sees nearly a 0% failure rate in
quiet environments in which both training and testing sets are gathered [8]. Yet the technique is

highly vulnerable to noise, both ambient and digital.

Question. How does the technique perform under our conditions?



Speaker recognition requires a training set to be pre-recorded. If both the training set and
testing sample are made in a similar noise-free environment, speaker recognition can be quite

successful.

Question. What happens when testing and training samples are taken from environments with

different types and levels of ambient noise?

This thesis aims to answer the preceding questions using an open-source implementation of
MEFCC called Modular Audio Recognition Framework (MARF). We will determine how well
the MAREF platform performs in the lab. We will look not only at the baseline “clean” environ-
ment, where both the recorded voices and testing samples are made in noiseless environments,
but we shall examine the injection of noise into our samples. The noise will come both from the
ambient background of the physical environment and the digital noise created by packet loss,
mobile device voice codecs, and audio compression mechanisms. We shall also examine the
shortcomings with MARF and how, due to platform limitations, we were unable improve upon

our results.

1.3 Thesis Roadmap

We will begin with some background, specifically some history behind, and methodologies for,
speaker recognition. Next, we will explore both the evolution and state of the art of speaker
recognition. Then we will look at what products currently support speaker recognition and why

we decided on MAREF for our recognition platform.

Next we will investigate an architecture in which to host speaker recognition. We will look
at the trade-offs of deploying on a mobile device versus on a server. Which is more robust?
How scalable is it? We propose one architecture for the system and explore uses for it. Its
military applications are apparent, but its civilian applications could have significant impact on
the efficiency of emergency response teams and the ability to quickly detect and locate missing
personnel. From Army companies to small tactical team, from regional disaster response to

six-man SWAT teams, this system can be quickly re-scaled to meet very diverse needs.

Lastly, we will look at where we go from here. What are the major shortcomings with our
approach? We will examine which issues can be solved with the application of this new software
and which ones need to wait for advances in hardware. We will explore which areas of research
need to be further developed to bring advances in speaker recognition. Finally, we examine

“spin-offs” of this thesis.
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CHAPTER 2:
Speaker Recognition

2.1 Speaker Recognition
2.1.1 Introduction

As we listen to people, we are innately aware that no two people sound alike. This means aside
from the information that the person is actually conveying through speech, there is other data,
metadata if you will, that is sent along that tells us something about how they speak. There is
some mechanism in our brain that allows us to distinguish between different voices, much as
we do with faces or body appearance. Speaker recognition in software is the ability to make
machines do what is automatic for us. The field of speaker recognition has been around for
quite sometime, but with the explosion of computation power within the last decade we have

seen significant growth in the field.

The speaker recognition problem has two inputs: a voice sample, also called a festing sample,
and a set of training samples taken from a training group of speakers. If the testing sample is
known to have come from one of the speakers in the training group then identifying which one
is called closed-set speaker recognition. If the testing sample may be drawn from a speaker
population outside the training group then recognizing when this is so, or identifying which
speaker uttered the testing sample when it is not, is called open-set speaker recognition [9].
A related but different problem is speaker verification, also know as speaker authentication or
detection. In this case, the problem is given a testing sample and alleged identity as inputs,
verifying the sample originated from the speaker with that identity. In this case, we assume that

any impostors to the system are not known to the system so the problem is open-set recognition.

Important to the speaker recognition problem are the training samples. One must decide whether
the phrases to be uttered are text-dependent or text-independent. With a system that is text-
dependent, the same phrase is uttered by a speaker in both the testing and training samples.
While text-dependent recognition yields higher success rates [10], voice samples for our pur-
poses are text independent. Though less accurate, text independence affords biometric passivity
and allows us to use shorter sample sizes since we do not need to sample an entire word or

passphrase.



Below are the high-level steps of an algorithm for open-set speaker recognition [11]:

N

W

9

. enrollment, or first recording of our users, generating speaker reference models
. digital speech data acquisition

. feature extraction

. pattern matching

. accepting or rejecting

Joseph Campbell lays this process out well in his paper:

Looking at the work done by MIT with the corpus used in Chapter 3 we can get an idea of what
results we should expect. MIT’s testing varied slightly as they used Hidden Markov Models

Feature extraction maps each interval of speech to a multidimensional feature space.
(A speech interval typically spans 1030 ms of the speech waveform and is referred
to as a frame of speech.) This sequence of feature vectors x; is then compared to
speaker models by pattern matching. This results in a match score for each vector
or sequence of vectors. The match score measures the similarity of the computed
input feature vectors to models of the claimed speaker or feature vector patterns for
the claimed speaker. Last, a decision is made to either accept or reject the claimant
according to the match score or sequence of match scores, which is a hypothesis-

testing problem.[11]

(HMM) (explained below) which is not supported by MARF.

They initially tested with mismatched conditions. In particular, they examined the impact of

environment and microphone variability inherent with handheld devices [12]. Their results are

as follows:

System performance varies widely as the environment or microphone is changed
between the training and testing phase. While the fully matched trial (trained and
tested in the office with an earpiece headset) produced an equal error rate (EER)

of 9.4%, moving to a matched microphone/mismatched environment (trained in



a lobby with the earpiece microphone but tested at a street intersection with an
earpiece microphone) resulted in a relative degradation in EER of over 300% (EER
of 29.2%). [12]

In Chapter 3 we will put these results to the test and see how MAREF, using different feature
extraction and pattern matching than MIT, fares with mismatched conditions.

2.1.2 Feature Extraction

What are these features of voice that we must unlock to have the machine recognize the person
speaking? Though there are no set features that we can examine, source-filter theory tells us that
the sound of speech from the user must encode information about their own vocal biology and
pattern of speech. Therefore, using short-term signal analysis, say in the realm of 10ms-20ms,
we can extract features unique to a speaker. This is typically done with either FFT analysis or
LPC (all-pole) to generate magnitude spectra which are then converted to melcepstrum coeffi-
cients [10]. If we let x be a vector that contains N sound samples; mel-cepstrum coefficients

are obtained by the following computation:[13]

e Discrete Fourier transform (DFT) 2 of the data vector x is computed using the FFT algo-

rithm and a Hanning window.

e The DFT (%) is divided into M nonuniform subbands, and the energy (e;,i = 1,2, ..., M)
of each subband is estimated. The energy of each subband is defined as e; = Z?:p , where
p and q are the indices of subband edges in the DFT domain. The subbands are distributed
across the frequency domain according to a “melscale,” which is linear at low frequencies
and logarithmic thereafter. This mimics the frequency resolution of the human ear. Below
10 kHz, the DFT is divided linearly into 12 bands. At higher frequency bands, covering

10 to 44 kHz, the subbands are divided in a logarithmic manner into 12 sections.

e The melcepstrum vector (c = [c1, c2,..., cK ]) is computed from the discrete cosine trans-
form (DCT):

cr = M log(e;) coslk(i — 0.5)m /M), k =1,2,--- K

where the size of the melcepstrum vector (K') is much smaller than data size N. [13]

These vectors will typically have 24-40 elements.



Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) algorithm is used both for feature extraction and as the basis
for the filter algorithm used in preprocessing. Essentially the FFT is an optimized version of
the Discrete Fourier Transform. It takes a window of size 2* and returns a complex array of
coefficients for the corresponding frequency curve. For feature extraction, only the magnitudes
of the complex values are used, while the FFT filter operates directly on the complex results.
The implementation involves two steps: First, shuffling the input positions by a binary reversion
process, and then combining the results via a “butterfly” decimation in time to produce the final
frequency coefficients. The first step corresponds to breaking down the time-domain sample of
size n into n frequency- domain samples of size 1. The second step re-combines the n samples

of size 1 into 1 n-sized frequency-domain sample.[1]

FFT Feature Extraction The frequency-domain view of a window of a time-domain sample
gives us the frequency characteristics of that window. In feature identification, the frequency
characteristics of a voice can be considered as a list of “features” for that voice. If we combine
all windows of a vocal sample by taking the average between them, we can get the average
frequency characteristics of the sample. Subsequently, if we average the frequency characteris-
tics for samples from the same speaker, we are essentially finding the center of the cluster for
the speaker’s samples. Once all speakers have their cluster centers recorded in the training set,
the speaker of an input sample should be identifiable by comparing her frequency analysis with
each cluster center by some classification method. Since we are dealing with speech, greater
accuracy should be attainable by comparing corresponding phonemes with each other. That is,
“th” in “the” should bear greater similarity to “th” in “this” than will “the” and “this” when
compared as a whole. The only characteristic of the FFT to worry about is the window used
as input. Using a normal rectangular window can result in glitches in the frequency analysis
because a sudden cutoff of a high frequency may distort the results. Therefore it is necessary to
apply a Hamming window to the input sample, and to overlap the windows by half. Since the
Hamming window adds up to a constant when overlapped, no distortion is introduced. When
comparing phonemes, a window size of about 2 or 3 ms is appropriate, but when comparing
whole words, a window size of about 20 ms is more likely to be useful. A larger window size

produces a higher resolution in the frequency analysis.[1]

Linear Predictive Coding (LPC)
LPC evaluates windowed sections of input speech waveforms and determines a set of coeffi-

cients approximating the amplitude vs. frequency function. This approximation aims to repli-

10



cate the results of the Fast Fourier Transform yet only store a limited amount of information:

that which is most valuable to the analysis of speech.[1]

The LPC method is based on the formation of a spectral shaping filter, H (=), that, when applied
to a input excitation source, U(z), yields a speech sample similar to the initial signal. The
excitation source, U(z), is assumed to be a flat spectrum leaving all the useful information in
H(z). The model of shaping filter used in most LPC implementation is called an “all-pole”

model, and is as follows:

Where p is the number of poles used. A pole is a root of the denominator in the Laplace

transform of the input-to-output representation of the speech signal.[1]

The coefficients a;, are the final representation of the speech waveform. To obtain these coef-
ficients, the least-square autocorrelation method was used. This method requires the use of the

auto-correlation of a signal defined as:

where x(n) is the windowed input signal.[1]

In the LPC analysis, the error in the approximation is used to derive the algorithm. The error at
time n can be expressed in the following manner: e(n) = s(n) >4_;(ax - s(n — k)). Thus, the

complete squared error of the spectral shaping filter H(z) is:

E =30 (x(n) =35 (ak - 2(nk)))

To minimize the error, the partial derivative 371”; is taken for each k£ = 1..p, which yields p linear

equations in the form:

Yt so(m(n = 1) - x(n)) = i (ar - X2 o (x(n — 1) - z(n — k)

For ¢+ = 1..p. Which, using the auto-correlation function is:

11



Y= (ak - R(i = k) = R(i)

Solving these as a set of linear equations and observing that the matrix of auto-correlation
values is a Toeplitz matrix yields the following recursive algorithm for determining the LPC

coefficients:

R(m)— Zzll (am—1(k)R(m—k)))
€m—1

am(m) = kp,
k) —kpy - am(m—Fk)forl <k <m-—1
Ep=01—k) Ep,

kp =

am(k) = am—1<

This is the algorithm implemented in the MARF LPC module.[1]

Usage in Feature Extraction The LPC coefficients are evaluated at each windowed iteration,
yielding a vector of coefficients of the size p. These coefficients are averaged across the whole
signal to give a mean coefficient vector representing the utterance. Thus a p sized vector was
used for training and testing. The value of p chosen was based on tests given speed vs. accuracy.

A p value of around 20 was observed to be accurate and computationally feasible.[1]

2.1.3 Pattern Matching

When the system trains a user, the voice sample is passed through the feature extraction pro-
cess as discussed above. The vectors that are created are used to make the biometric voice-
print of that user. Ideally we want the voice-print to have the following characteristics: “1) a
theoretical underpinning so one can understand model behavior and mathematically approach
extensions and improvements; (2) generalizable to new data so that the model does not over fit
the enrollment data and can match new data; (3) parsimonious representation in both size and

computation [9].”

The attributes of this training vector can be clustered to form a code-book for each trained user.
So, when a new voice is sampled in the testing phase, the vector generated from the new voice

sample is compared against the existing code-books of known users.

There are two primary ways to conduct pattern matching: stochastic models and template mod-

els. In stochastic models, the pattern matching is probabilistic and results in a measure of the

12



likelihood, or conditional probability, of the observation given the model. For template models,

the pattern matching is deterministic [11].

The template model and its corresponding distance measure is perhaps the most intuitive since
the template method can be dependent or independent of time. Common models used are:
Chebyshev, or Manhattan Distance, Euclidean Distance, Minkowski Distance, and Mahalanobis
Distance. Please see Section 2.2.3 for a detail description of how these algorithms are imple-
mented in MARF.

The most common stochastic models used in speaker recognition are the Hidden Markov Mod-
els. They encode the temporal variations of the features and efficiently model statistical changes
in the features, to provide a statistical representation of how a speaker produces sounds. During
enrollment, HMM parameters are estimated from the speech using established algorithms. Dur-
ing verification, the likelihood of the test feature sequence is computed against the speaker’s
HMMs.[10] For text-independent applications, single state HMMs, also known as Gaussian
Mixture Models (GMMs), are used. From published results, HMM based systems generally
produce the best performance [9]. MARF does not support HMMs and therefore their experi-

mentation is outside the scope of this thesis.

2.2 Modular Audio Recognition Framework
2.2.1 Whatis it?

MAREF stands for Modular Audio Recognition Framework. It contains a collection of algo-
rithms for Sound, Speech, and Natural Language Processing arranged into an uniform frame-
work to facilitate addition of new algorithms for prepossessing, feature extraction, classification,
parsing, etc. implemented in Java. MAREF can give researchers a platform to test existing and
new algorithms. The frameworks originally evolved around audio recognition, but research is

not restricted to it due to MARF’s generality as well as that of its algorithms [14].

MAREF is not the only open source speaker recognition platform available. The author of this
thesis examined both Alize [15] and CMU’s Sphinx [16]. Sphinx, while promising for its sup-
port of HMM, is primary a speech recognition application. Its support for speaker recognition
was almost non-existent. Alize, while a full featured speaker recognition toolkit, is written in the
C programming language with the bulk of its user documentation written in French. This leaves
MARE. A fully supported, well documented, language toolkit that supports speaker recognition.
Also, MAREF is written in Java, requiring no tweaking of the source code to run it on different
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operating systems or hardware. Fulfilling the portable toolkit need as laid out in Chapter 5.

2.2.2 MARF Architecture

Before we begin, let us examine the basic MARF system architecture. Let us take a look at the

general MARF structure in Figure 2.1.

The MAREF class is the central “server” and configuration *“placeholder”, which contains the
major methods for a typical pattern recognition process. The figure presents basic abstract
modules of the architecture. When a developer needs to add or use a module, they derive from

the generic ones.
A conceptual data-flow diagram of the pipeline is in Figure 2.2.

The gray areas indicate stub modules that are yet to be implemented. Consequently, the frame-
work has the mentioned basic modules, as well as some additional entities to manage storage

and serialization of the input/output data.

An application, using the framework, has to choose the concrete configuration and sub-modules
for pre-processing, feature extraction, and classification stages. There is an API the application

may use defined by each module or it can use them through the MARF.

2.2.3 Audio Stream Processing

While running MARE, the audio stream goes through three distinct processing stages. First
there is the Pre-possessing filter. This modifies the raw wave file and prepares it for processing.
After pre-processing, which may be skipped with the raw option, comes Feature Extraction.
Here is where we see class feature extraction such as FFT and LPC. Finally, classification is run

as the last stage.

Pre-processing

Pre-precessing is done to the sound file to prepare it for feature extraction. Ideally we want
to normalize the sound or perform some type of filtering on it to remove excessive noise or
interference. MARF supports most of the common audio pre-processing filters. These filter
options are: —raw, —norm, —silence, —noise, —endp, and the following FFT filters:
—low,~high, and ~band. Interestingly, as shown in Chapter 3, the most successful filtering
was no filtering at all, achieved in MARF by bypassing all preprocessing with the —raw flag.
Figure 2.3, shows the API along with the description of the methods.
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“Raw Meat”, —raw

This is a basic “pass-everything-through” method that does not do actually do any pre-processing.
Originally developed within the framework, it was meant to be a base line method, but it gives
better top results out of many configurations including the testing done in Chapter 3. It it impor-
tant to point out that this preprocessing method does not do any normalization. Further reseach
should be done to show the effectivness, or detriment, of normalization. Likewise silence and

noise removal is not done with this processing method.[1]

Normalization, —-norm

Since not all voices will be recorded at exactly the same level, it is important to normalize the
amplitude of each sample in order to ensure that features will be comparable. Audio normaliza-
tion is analogous to image normalization. Since all samples are to be loaded as floating point
values in the range [—1.0, 1.0], it should be ensured that every sample actually does cover this

entire range.[1]

The procedure is relatively simple: find the maximum amplitude in the sample, and then scale
the sample by dividing each point by this maximum. Figure 2.4 illustrates normalized input

wave signal.

Noise Removal, —-noise

Any vocal sample taken in a less-than-perfect (which is always the case) environment will
experience a certain amount of room noise. Since background noise exhibits a certain frequency
characteristic, if the noise is loud enough it may inhibit good recognition of a voice when the
voice is later tested in a different environment. Therefore, it is necessary to remove as much

environmental interference as possible.[1]

To remove room noise, it is first necessary to get a sample of the room noise by itself. This
sample, usually at least 30 seconds long, should provide the general frequency characteristics
of the noise when subjected to FFT analysis. Using a technique similar to overlap-add FFT
filtering, room noise can then be removed from the vocal sample by simply subtracting the

frequency characteristics of noise from the vocal sample in question.[1]

Silence Removal, -silence
The silence removal is performed in time domain where the amplitudes below the threshold
are discarded from the sample. This also makes the sample smaller and less similar to other

samples thereby improving overall recognition performance.
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The actual threshold can be set through a parameter, namely ModuleParams, which is a third

parameter according to the pre-precessing parameter protocol.[1]

Endpointing, —endp

Endpointing the deciding where an utterenace begins and ends, then filtering out the rest of
the stream as noise. The endpointing algorithm is implemented in MAREF as follows. By the
end-points we mean the local minimums and maximums in the amplitude changes. A variation
of that is whether to consider the sample edges and continuous data points (of the same value)
as end-points. In MAREF, all these four cases are considered as end-points by default with an

option to enable or disable the latter two cases via setters or the ModuleParams facility. [1]

FFT Filter
The Fast Fourier transform (FFT) filter is used to modify the frequency domain of the input
sample in order to better measure the distinct frequencies we are interested in. Two filters are

useful to speech analysis: high frequency boost and low-pass filter.[1]

Speech tends to fall off at a rate of 6 dB per octave, and therefore the high frequencies can be
boosted to introduce more precision in their analysis. Speech, after all, is still characteristic of
the speaker at high frequencies, even though they have a lower amplitude. Ideally this boost
should be performed via compression, which automatically boosts the quieter sounds while
maintaining the amplitude of the louder sounds. However, we have simply done this using a
positive value for the filter’s frequency response. The low-pass filter is used as a simplified
noise reducer, simply cutting off all frequencies above a certain point. The human voice does
not generate sounds all the way up to 4000 Hz, which is the maximum frequency of our test
samples, and therefore since this range will only be filled with noise, it iS common to just

eliminate it. [1]

Essentially the FFT filter is an implementation of the Overlap-Add method of FIR filter design
[17]. The process is a simple way to perform fast convolution, by converting the input to the
frequency domain, manipulating the frequencies according to the desired frequency response,
and then using an Inverse- FFT to convert back to the time domain. Figure 2.5 demonstrates the

normalized incoming wave form translated into the frequency domain.[1]

The code applies the square root of the hamming window to the input windows (which are
overlapped by half-windows), applies the FFT, multiplies the results by the desired frequency

response, applies the Inverse-FFT, and applies the square root of the hamming window again,
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to produce an undistorted output.[1]

Another similar filter could be used for noise reduction, subtracting the noise characteristics
from the frequency response instead of multiplying, thereby removing the room noise from the

input sample.[1]

Low-Pass, High-Pass, and Band-Pass Filters, —1ow,~high,-band
The low-pass filter has been realized on top of the FFT Filter, by setting up frequency response
to zero for frequencies past a certain threshold chosen heuristically based on the window cut-off

size. All frequencies past 2853 Hz were filtered out. See Figure 2.6.

As with the low-pass filter, the high-pass filter has been realized on top of the FFT Filter, in fact,
it is the opposite to low-pass filter, and filters out frequencies before 2853 Hz. See Figure 2.7.

Finally, the band-pass filter in MARF is yet another instance of an FFT Filter, with the default
settings of the band of frequencies of [1000, 2853] Hz. See Figure 2.8.[1]

Feature Extraction

Present here are the feature extraction algorithms used by MARF. Since both FFTs and LPCs are
described above in Section 2.1.2, their detailed description will be left out from below. MARF
fully supports both FFT and LPC feature extraction (-f£ft, —1pc). MARF also support feature

extraction of Min/Max and a Feature Extraction Aggregation.

Hamming Window

Before we proceed with the other forms of feature extraction, let us briefly discuss “window-
ing”. To extract the features from our speech, it it necessary to cut it up into smaller pieces
as opposed to processing the whole sound file all at once. The technique of cutting a sample
into smaller pieces to be considered individually is called “windowing”. The simplest kind of

window to use is the “rectangle”, which is simply an unmodified cut from the larger sample.[1]

Unfortunately, rectangular windows can introduce errors, because near the edges of the window
there will potentially be a sudden drop from a high amplitude to nothing, which can produce

false “pops” and clicks in the analysis.[1]

A better way to window the sample is to slowly fade out toward the edges, by multiplying the
points in the window by a “window function”. If we take successive windows side by side,

with the edges faded out, we will distort our analysis because the sample has been modified by
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the window function. To avoid this, it is necessary to overlap the windows so that all points in
the sample will be considered equally. Ideally, to avoid all distortion, the overlapped window
functions should add up to a constant. This is exactly what the Hamming window does. It is
defined as:

z(n) = 0.54 — 0.46 - cos(3™%)
where x is the new sample amplitude, n is the index into the window, and [ is the total length of

the window.[1]

Min/Max Amplitudes, -minmax

The Min/Max Amplitudes extraction simply involves picking up X maximums and N minimums
out of the sample as features. If the length of the sample is less than X + N, the difference is
filled in with the middle element of the sample.

This feature extraction does not perform very well yet in any configuration because of the sim-
plistic implementation: the sample amplitudes are sorted and N minimums and X maximums
are picked up from both ends of the array. As the samples are usually large, the values in each
group are really close if not identical making it hard for any of the classifiers to properly dis-
criminate the subjects. An improvement to MARF would be to pick up values in N and X
distinct enough to be features and for the samples smaller than the X + N sum, use increments
of the difference of smallest maximum and largest minimum divided among missing elements

in the middle instead one the same value filling that space in.[1]

Feature Extraction Aggregation, —aggr

This option by itself does not do any feature extraction, but instead allows concatenation of
the results of several actual feature extractors to be combined in a single result. Currently in
MAREF, FFT and LPC are the extractors aggregated. Unfortunately, the main limitation of the
aggregator is that all the aggregated feature extractors act with their default settings [1], that is
to say, we cannot customize how we want each feature extrator to run when we invoke —aggr.

Yet, interestingly, this method of feature extraction produces the best results with MARE.

Random Feature Extraction, —-randfe
Given a window of size 256 samples, —~randfe picks at random a number from a Gaussian
distribution. This number is multiplied by the incoming sample frequencies. These numbers

are combined to create a feature vector. This extraction is really based on no mechanics of
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the speech, but really a random vector based on the sample. This should be the bottom line
performance of all feature extraction methods. It can also be used as a relatively fast testing

module.[1] Not surprisingly, this method of feature extraction produced extremely poor results.

Classification

Classification is the last step in the speaker verification process. After feature extraction, we
a have mathematical representation of voice that can be mathematically compared to another
vector. Since feature extraction is run on both our learned and testing samples, we have two

vectors to compare. Classification gives us methods to perform this comparison.

Chebyshev Distance, —cheb
Chebyshev distance is used along with other distance classifiers for comparison. Chebyshev
distance is also known as a city-block or Manhattan distance. Here is its mathematical repre-

sentation:

d(z,y) = 35= (Jee — ykl)

where = and y are features vectors of the same length n.[1]

Euclidean Distance, —eucl
The Euclidean Distance classifier uses an Euclidean distance equation to find the distance be-

tween two feature vectors.

If A = (z1,25) and B = (y1,y2) are two 2-dimensional vectors, then the distance between A

and B can be defined as the square root of the sum of the squares of their differences:

d(z,y) = /(w2 — 12)? + (21 — 11)?

Minkowski Distance, -mink
Minkowski distance measurement is a generalization of both Euclidean and Chebyshev dis-

tances.

1
T

d(z,y) = (Xi= (lee — yil)")

where r is a Minkowski factor. When r = 1, it becomes Chebyshev distance, and when r = 2,

it is the Euclidean one. x and y are feature vectors of the same length n.[1]
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Mahalanobis Distance, -mah

The Mahalanobis distance is based on weighting features with the inverse of their variance.
Features with low variance are boosted and have a better chance of influencing the total distance.
The Mahalanobis distance also involves an estimation of the feature covariances. Mahalanobis,
given enough speech data, can generate more reliable variances for each vowel context, which

can improve its performance [18].

d(z,y) =/(z —y)C~ Yz — )T

where z and y are feature vectors of the same length n, and C' is a covariance matrix, learned
during training for co-related features.[1] Mahalanobis distance was found to be a useful clas-

sifier in testing.
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Figure 2.1: Overall Architecture [1]
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Figure 2.2: Pipeline Data Flow [1]
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Figure 2.5: Fast Fourier Transform [1]
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Figure 2.6: Low-Pass Filter [1]
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Figure 2.7: High-Pass Filter [1]
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Figure 2.8: Band-Pass Filter [1]
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CHAPTER 3:
Testing the Performance of the Modular Audio
Recognition Framework

In this chapter, the performance of the Modular Audio Recognition Framework (MARF) in
solving the open-set speaker recognition problem is described. MARF was tested for accuracy

not speed. Accuracy was tested with variation along the following axes:

e Training set size
e Test sample size

e Background noise

First a description of the testing environment is given. It will cover the hardware and software
used and discuss how they were configured so that the results can be replicated. Then the test

results are described.

3.1 Test environment and configuration
3.1.1 Hardware

It is the beauty of this software solution that the only hardware required is a computer. The
hardware used in experimentation was the author’s laptop, a Dell Studio 15. The system is a
64-bit Mobile Intel 4 Series Express Chipset Family architecture fitted with the Intel T5800
CPU.

3.1.2 Software

The laptop is running the 64-bit version of the Arch Linux distribution (http://www.archlinux.
org/). Itis installed with a monolithic kernel, version 2.6.34. The sound card kernel module

is snd_hda_intel. Advanced Linux Sound Architecture (ALSA) version 1.0.23 is used as the
kernel level audio APIL. The current version of Sun Java install is the Java(TM) SE Runtime
Environment (build 1.6.0_20-b02).

For the speaker recognition system software, the system contains the latest version of the Modu-
lar Audio Recognition Framework (MARF) version 0.3.0-devel-20100519-fat. It is installed as
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a precompiled Java archive (jar) that exists in the system’s CLASSPATH variable. The software
that is responsible for the user recognition is the Speaker Identification Application (Speakerl-
dentApp) which is packaged with MARF version 0.3.0-devel-20060226.

The SpeakerldentApp can be run with with a preprocessing filter, a feature extraction setting,

and a classification method. The options are as follows:

Preprocessing:

—silence — remove silence (can be combined with any below)
—noise — remove noise (can be combined with any below)
—raw — no preprocessing

—norm — use just normalization, no filtering

—low — use low—pass FFT filter

—high — use high—pass FFT filter

—boost — use high—frequency—boost FFT preprocessor
—band — use band—pass FFT filter

—endp — use endpointing

Feature Extraction:

—lpc — use LPC

—fft — use FFT

—minmax — use Min/Max Amplitudes

—randfe — use random feature extraction

—aggr — use aggregated FFT+LPC feature extraction

Pattern Matching:

—cheb — use Chebyshev Distance
—eucl — use Euclidean Distance
—mink — use Minkowski Distance
—mah — use Mahalanobis Distance

There are 19 prepossessing filters, five types of feature extraction, and six pattern matching
methods. That leaves us with 19 x 5 x 6 = 570 permutations for testing. To facilitate this,
we used a bash script that would run a first pass to learn all the speakers using all the above
permutations then test against the learned database to identify the testing samples. The script

can be found in Appendix section A. Please note the command-line options correspond to some
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of the feature extraction and classification technologies discussed in Chapter 2.

Other software used: Mplayer version SVN-r31774-4.5.0 for conversion of the 16-bit PCM wav
files from 16kHz sample rate to Mono, 8kHz, 16-bit sample which is what SpeakerldentApp

expects. Gnu SoX v14.3.1 was used to trim testing audio files to desired lengths.

3.1.3 Test subjects

In order to allow for repeatable experimentation, all “users” are part of the MIT Mobile Device
Speaker Verification Corpus [19]. This is a collection of 21 female and 25 males voices. They
are recorded in multiple environments. These environments are an office, a noisy indoor court
(“Hallway”), and a busy traffic intersection. An advantage to this corpus is that not only is
each user recorded in these different environments, but in each environment they utter one of
nine unique phrases. This allows the tester to rule out possible erroneous results for a mash-ups
of random phrases. Also, since these voices were actually recorded in their environments, not
simulated, this corpus contains the Lombard effect, the fact speakers alter their style of speech

in noisier conditions in an attempt to improve intelligibility[12].

This corpus also contains the advantage of being recorded on a mobile device. So, all the
internal noise to the device can be found in the recording samples. In fact, Woo’s paper contains

a spectrograph showing this noise embedded in the audio stream [12].

The samples come as mono, 16-bit, 16kHz wav files. To be used in MARF, they must be con-
verted to an 8kHz wav file. To accomplish this, Mplayer was run with the following command

to convert the wav file to a MARF appropriate file using:

$ mplayer \
—quiet
—af volume=0,resample=8000:0:1 \
—ao pem: file="<fileForMARF >.wav” <initPCMfile >.wav

3.2 MAREF performance evaluation
3.2.1 Establishing a common MARF configuration set

Before evaluating the performance of MARF along the three axes, it was necessary to settle on

a common set of MARF configurations to be used in investigating performance across the three

29



axes. The configurations has three different facets of speaker recognition: 1) preprocessing,
2) feature extraction and 3) pattern matching or classification. Which configurations should be
used? The MAREF user’s manual suggested some which have performed well. However, in the
interest of testing the manual’s hypotheses, we decided to see which configurations did the best

with the MIT Corpus office samples and our testing machine platform.

We prepped all files in the MIT corpus file Enroll _Sessionl.tar.gz as outlined above.
Then female speakers FOO—F04 and male speakers M00-M04 were selected from the corpus
as our training subjects. For each speaker, the “Office — Headset” environment was used. It
was decided to initially use five training samples per speaker to initially train the system. The
respective phrase0l —phrase05 was used as the training set for each speaker. The Speaker
Identification Application was then run to both learn the speakers’ voices and to test speaker

samples. For testing, each speaker’s respective phrase06 and phrase07 was used.

The output of the script given in A was redirected to a text file then manually put in an Excel
spreadsheet to analyze. Using the MARF Handbook as a guide toward performance, we closely
examined all results with the pre-prossessing filter raw and norm and with the pre-prossessing
filter endp only with the feature extraction of 1pc. With this analysis, the top-5 performing
configurations were identified (see Table 3.1). For “Incorrect”, MARF identfied a speaker other

than the testing sample.

Table 3.1: “Baseline” Results

Configuration Correct Incorrect Recog. Rate %
-raw -fft -mah 16 4 80
-raw -fft -eucl 16 4 80
-raw -aggr -mah 15 5 75
-raw -aggr -eucl 15 5 75
-raw -aggr -cheb 15 5 75

It is interesting to note that the most successful configuration of “-raw -fft -mah” was ranked as
the 6th most accurate in the MARF user’s manual from the testing they did runnung a similar
script with their own speaker set[1]. These five configurations were then used in evaluating
MAREF across the three axes.

It should be pointed out that during identification of a common set of MARF configrations, it

was discovered that MARF repeatedly failed to recognize a speaker for whom it was never
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Table 3.2: Correct IDs per Number of Training Samples

7 5 3 1
-raw -fft -mah 15 16 15 15
-raw -fft -eucl 15 16 15 15
-raw -aggr-mah 16 15 16 16
-raw -aggr-eucl 15 15 16 16
-raw -aggr -cheb 16 15 16 16

given a training set. From the MIT corpus, four “Office-Headset” speakers from the file
Imposter.tar.gz, two male and two female(IM1, IM2, IF1, IF2), were tested against the
set of known speakers. MAREF failed to detect all four as unknown. Four more speakers were
added in the same fashion above(IM3, IM4, IF3, IF4). Again, MAREF failed to correctly identify

them as an impostor. MARF consistanly issued false positives for all unknown speakers.

MAREF is capible of outputting “Unknown” for user ID. For some configurations (that performed
terribly) such as —1ow —-lpc -nn, known speakers were displayed as Unknown. There is
some threshold in place but whether it can be tuned is not documented. For this reason, further
investigation of MARF along the three axes was limited to its performance in solving the closed-

set speaker recognition problem.

3.2.2 Training-set size

As stated previously, the baseline was created with five training samples per user. We would
like to see what is the minimum number of samples need to keep our above mentioned setting
still accurate. We re-ran all testing with samples per user in the range of seven, five(baseline),
three, and one. For each iteration, all MARF databases were flushed, feature extraction files

deleted, and users retrained. Please see Table 3.2.

It is interesting to note that a set size of three actually produced the best results for MARF. Due

to this discovery, the training set size of three will be the new baseline for the rest of testing.

3.2.3 Testing sample size

With a system as laid out in Chapter 4, it is critical to know how much voice data does MARF
actually need to perform adequate feature extraction on the sample for voice recognition. We
may need to get by with a shorter sample if, in real life the user talking gets cut off. Also,

if the sample is quite long, it would allow us to break the sample up into many smaller parts
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for dynamic re-testing, allowing us the ability to test the same voice sample multiple for higher
accuracy. The voice samples in the MIT corpus range from 1.6 — 2.1 seconds in length. We have
kept this sample size for our baseline, connoted as full. Using the gnu application SoX, we
trimmed off the ends of the files to allow use to test the performance of our reference settings
at the following lengths: full, 1000ms, 750ms, and 500ms. Please see Graph 3.1 for the

results.

SoX script as follows:

#!/bin/bash

for dir in ‘Is —d =x/x/°

do
for i in ‘Is $dir=x.wav"
do
newname="‘echo $i|sed ’s/.wav/_1000.wav/g’ "
sox $i $newname trim O 1.0
newname="‘echo $i|sed ’s/.wav/_750.wav/g’ "
sox $i $newname trim O 0.75
newname="‘echo $i|sed ’s/.wav/_500.wav/g’ "
sox $i $newname trim 0 0.5
done
done

As shown in the graph, the results collapse as soon as we drop below 1000ms. This is not
surprising, for as noted in Chapter 2, one really needs about 1023ms of data to perform ideal

feature extraction.

3.2.4 Background noise

All of our previous testing has been done with samples made in noise-free environments. As
stated earlier, the MIT corpus, includes recording made in noisy environments. For testing in
this section, we have kept the relatively noise-free samples as our training-set and have included
noisy samples to test against it. Recordings are taken from a hallway and an intersection. Graph

3.2 Show the effects of noise on each of our testing parameters.

What is most surprising is the severe impact noise had on our testing samples. More testing
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Correct IDs per Shorter Testing Sample
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e -raw -fft -eucl 15 16 12 6
-raw -aggr -mah 16 16 10 3
e _raW -aggr -eucl 16 16 10 3
e -[aW -aggr -cheb 16 14 7 2

Figure 3.1: Top Setting’s Performance with Variable Testing Sample Lengths

must to be done to see if combining noisy samples into our training-set allows for better results.

3.3 Summary of results

To recap, by using an available voice corpus, we were able to perform independently repeatable
testing of the MARF platform for user recognition. Our corpus allowed us to account for both
the Lombardi effect and the internal noise generated by a mobile device in our measurement.
Starting with a baseline of five samples per user, we were able to extend testing to various
parameters. We tested against adjustments to the user training-set to find the ideal number of
training samples per user. From there we tested MARF’s effectiveness at reduced testing sample

length. Finally, we tested MARF’s performance of samples from noisy environments.
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Correct IDs in Noisy Environment
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e -[QW -aggr -cheb 16 5 2

Figure 3.2: Top Setting’s Performance with Environmental Noise

Testing proved that the Modular Audio Recognition Framework with its Speaker Identification
Application succeeded at basic user recognition. MARF was also successful at recognizing
users from sample lengths as short as 1000ms. This testing shows that MARF is a viable

platform for speaker recognition.

The biggest failure with our testing was SpeakerldentApp’s inability to recognize an unknown
user. In the top 20 testing results for accuracy, Unknown User was not even selected as the sec-
ond guess. With this current shortcoming, it is not possible to deploy this system, as envisioned
in Chapter 1, to the field. Since SpeakerldentApp always maps a known user to a voice, we
would be unable to detect a foreign presence on our network. Furthermore, it would confuse
any type of Personal Name System we set up since the same user could get mapped to multiple

phones as SpeakerldentApp misidentifies an unknown user to a know user already bound to
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another device. This is a huge shortcoming for our system.

MAREF also performed poorly with a testing sample coming from a noisy environment. This is
a critical shortcoming since most people authenticating with our system described in Chapter 4

will be contacting from a noisy environment, such as combat or a hurricane.

3.4 Future evaluation
3.4.1 Unknown User Problem

Due to the previously mentioned failure, more testing need to be done to see if SpeakerldentApp
can identify unknown voices and keep its 80% success rate on known voices. The MARF
manual states better success with their tests when the pool of registered users was increased [1].

More tests should be done with a large group of speakers for the system to learn.

If more speakers do not increase SpeakerldentApp’s ability to identify unknown users, testing
should also be done with some type of external probability network. This network would take
the output from SpeakerldentApp then try to make a “best guess” base on what Speakerlden-
tApp is outputting and what it has previously outputted along with other information, such as,

geo-location.

3.4.2 Increase Speaker Set

This testing was done with a speaker-set of ten speakers. More work needs to be done to
explore the effects of increasing the number of users. For an accurate model of a real-world
use of this system, SpeakerldentApp should be tested with at least 50 trained users. It should
be examined how the increased speaker set affects for trained user identification and unknown

user identification.

3.4.3 Mobile Phone Codecs
While our testing did include the effect of the noisy EMF environment that is today’s mobile

phone, it lacked the effect caused by mobile phone codecs. This may be of significant conse-
quence as work has shown the codecs used for GSM can significantly degrade the performance
of speaker identification and verification systems [20]. Future work should include the effects

of these codecs.
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3.4.4 Noisy Environments

With MARF’s failure with noisy testing samples, more work must be done to increase its per-
formance under sonic duress. Wind, rain, and road noise along with other background noise
most likely will severely impact SpeakerldentApp’s ability to identify speakers. As the creators
of the corpus state, “Although more tedious for users, multistyle training (i.e. requiring a user to
provide enrollment utterances in a variety of environments using a variety of microphones) can
greatly improve robustness by creating diffuse models which cover a range of conditions[12].”

This may not be practical for the environments in which this system is expected to operate.
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CHAPTER 4.
An Application: Referentially-transparent Calling

This chapter sketches the design of a system in which the physical binding of users to cellphones
via speaker recognition is leveraged to provide a useful service called referential transparency.
The system is envisioned for use in a small user space, say less than 100 users, where every
user must have the ability to call each other by name or pseudonym (no phone numbers). On
the surface, this may not seem novel. After all, anyone can dial a friend by name today using a
directory service that maps names to numbers. What is being proposed here is much different.
Suppose a person makes some number of outgoing calls over a variety of cell phones during
some period of time. At any time, this person may need to receive an incoming call, however,
they have made no attempt to update callers of the number at which they can be currently
reached. The system described here would put the call through to the cell phone at which the
person made their most recent outbound call.

Contrast this process with that which is required when using a VOIP technology such as SIP.
Certainly with SIP discovery, all users in an area could be found and phone books dynamically
updated. But, what would happen if that device is destroyed or lost? The user needs to find a
new device, deactivate whomever is logged into the device, then log themselves in. This is not

at all passive, and in a combat environment, an unwanted distraction.

Finally, the major advantage of this system over SIP is the ability of many-to-one binding. It is
possible with our system to have many users bound to one device. This would be needed if two

or more people are sharing the same device. This is currently impossible with SIP.

Managing user-to-device bindings for callers is a service called referential transparency. This

service has three major advantages:

e It uses a passive biometric approach, namely speaker recognition, to associate a person
with a cell phone. Therefore callees are not burdened with having to update forwarding

numbers.

e [t allows GPS on cellular phones to be leveraged for determining location. GPS alone is

inadequate since it indicates phone location and a phone may be lost or stolen.
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BeliefNet MARF

Figure 4.1: System Components

e It allows calling capability to be disabled by person rather than by phone. If an unau-
thorized person is using a phone then service to that device should be disabled until an
authorized user uses it again. The authorized user should not be denied calling capability

merely because an unauthorized user previously used it.

The service has many applications, including military missions and civilian disaster relief.

We begin with the design of the system and discuss its pros and cons. Lastly, we shall consider

a peer-to-peer variant of the system and look at its advantages and disadvantages.

4.1 System Design

The system is comprised of four major components:

1. Call server - call setup and VOIP PBX.
2. Cellular base station - interface between cellphones and call server.
3. Caller ID - belief-based caller ID service.

4. Personal name server - maps a caller’s ID to an extension.

The system is depicted in Figure 4.1.

Call Server

The first component we need is the call server. Each voice channel, or stream, must go through
the call server. Each channel is half-duplex, that is, only one voice is on the channel. It is the
call server’s responsibility to mux the streams to and push them back out to the devices to create
a conversation between users. It can mux any number of streams, from a one-to-one phone call

to large group conference call. An example of a call server is Asterisk [21].
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Cellular Base Station

The basic needs for a mobile phone network are the phones and some type of radio base station
to which the phones can communicate. Since our design has off-loaded all identification to
our caller-id system and is in no way dependent on the phone hardware, any mobile phone
that is compatible with our radio base station can be used. This gives great flexibility in the
procurement of mobile devices. We are not tied to any type of specialized device that must be
ordered via the usual supply chains. Assuming we set up a GSM network, we could buy a local

phone and tie it to our network.

With an open selection for devices, we have an open selection for radio base stations. The
selection of a base station will be dictated solely by operational considerations as opposed
to what technology into which we are locked. A commander may wish to ensure their base
station is compatible with local phones to ensure local access to devices. It is just as likely,
say in military applications, one may want a base station that is totally incompatible with the
local phone network to prevent interference and possible local exploitation of the network.
Base station selection could be based on what your soldiers or aid workers currently have in
their possession. The decision on which phones or base stations to buy is solely dictated by

operational needs.

Caller ID
The caller ID service, dubbed BeliefNet, is a probabilistic network capable of a high probabil-

ity user identification. Its objective is to suggest the identity of a caller at a given extension.
It may be implemented in general as a Bayesian network with inputs from a wide variety of
attributes and sources. These include information such as how long it has been since a user was
heard from on a device, the last device to which a user was associated, where they located the
last time they were identified, etc. We could also consider other biometric sources as inputs.
For instance, a 3-axis accelerometer embedded on the phone could provide a gait signature
[22], or a forward-facing camera could provide a digital image of some portion of the person.
The belief network operates continuously in the background, as it is supplied new inputs, con-
stantly making determinations about caller IDs. It is invisible to callers. A belief network was
not constructed as part of this thesis. The only attribute considered for this thesis was voice,

specifically, its analysis by MARF.

As stated in Chapter 3, for MAREF to function it needs both a training set (set of known users)
and a testing set (set of users to be identified). The training set would be recorded before a team
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member deployed. It could be recorded either at a PC, as done in Chapter 3, or it could be done
over the mobile device itself. The efficacy of each approach will need to be tested in the future.
The voice samples would be loaded onto the MARF server along with a flat-file with a user id
attached to each file name. MARF would then run in training mode, learn the new users, and

be ready to identify them at a later date.

The call server may be queried by MARE, either via Unix pipe or UDP message (depending on
the architecture). The query requests a specific channel and a duration of time of sample. If
the channel is in use, the call server returns to MARF the requested sample. MARF attempts
to identify the voice on the sample. If MARF identifies the sample as a known user, this user

information is then pushed back to the call server and bound as the user id for the channel.

Should a voice be declared as unknown, the call server stops sending voice and data traffic to
the device associated with the unknown voice. The user of the device can continue to speak and,
quite possibly, if it was a false negative, be reauthorized onto the network without ever knowing
they had been disassociated from the network. At anytime, the voice and data will flow back to

the device as soon as someone known starts speaking on the device.

Caller ID running the BeliefNet will also interface with the call server, but where we install and
run it will be dictated by need. It may be co-located on the same machine as the call server or
may be many miles away on a sever in a secured facility. It could also be connected to the call

server via a Virtual Private Network (VPN) or public lines if security is not a top concern.

Personal Name Service

As mentioned in Chapter 1, we can incorporate a type of Personal Name Service (PNS) into
our design. We can think of this closely resembling Domain Name Service (DNS) found on the
Internet today. As a user is identified, their name could be bound to the channel they are using

in a PNS hierarchy to allow a dial by name service.

Consider the civilian example of disaster response. We may gave a root domain of . flood.
Within that that disaster area we could have an aid station with near a river. This could be
addressed as aidstation.river.flood. As aid worker “Bob” uses the network, he is
identified by MARF and his device is now bound to him. Anyone is working in the domain
of aidstation.river.flood would just need to dial “Bob” to reach him. Someone at
flood command could dial bob.aidstation.river to contact him. Similar to the other

services, PNS could be located on the same server as MARF and the call server, or, be located
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on a separate machine connect via an IP network.

4.2 Pros and Cons

The system is completely passive from the caller’s perspective. Each caller and callee is bound
to a device through normal use via processing done by the caller ID sub-component. This is

entirely transparent to both parties. There is no need to key in any user or device credentials.

Since this system may operate in a fluid environment where users are entering and leaving an
operational area, provisioning users must not be onerous. All voice training samples are stored
on a central server. It is the only the server impacted by transient users. This allows central and

simplified user management.

The system overall is intended to provide referential transparency through a belief-based caller
ID mechanism. It allows us to call parties by name, however, the extensions at which these
parties may be reached is only suggested by the PNS. We do not know whether these are correct
extensions as they arise from doing audio analysis only. Cryptography and shared keys cannot
be relied upon in any way because the system must operate on any type of cellphone without
a client-side footprint of any kind, as discussed in the next section, we cannot assume we have
access to the kernel space of the phone. It is therefore assumed that these extensions will
actually be dialed or connected to so that a caller can attempt to speak to the party on the
other end and confirm their identity through conversation. Without message authentication
codes, there is a man-in-the-middle threat that could place an authorized user’s voice behind
an unauthorized extension. This makes the system unsuitable for transmitting secret data to

cellphones since they are vulnerable to intercept.

4.3 Peer-to-Peer Design

It is easy to imagine our needs being met with a simple peer-to-peer model without any type
of background server. Each handset, with some custom software, could identify a user, bind
their name to itself, push out this binding to the ad-hoc network of other phones running similar

software, and allow its user to fully participate on the network.

This design does have several advantages. First, it is a simple setup. There is no need for a
network infrastructure with multiple services. Each device can be pre-loaded with the users it
expects to encounter for identification. Second, as the number of network users grow, one needs

just to add more phones to the network. There would not be a back-end server to upgrade or
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network infrastructure to build-out to handle the increase in MAREF traffic. Lastly, due to this
lack of back-end services, the option is much cheaper to implement. So, with less complexity,

clean scalability, and low cost, could this not be a better solution?

There are several drawbacks to the peer-to-peer model that are fatal. First, user and device
management becomes problematic as we scale up the number of users. How does one know
which training samples are stored on which phones? While it would be possible to store all our
known users on a phone, phone storage is finite; as our number of users grow, we would quickly
run out of storage on the phone. Even if storage is not an issue, there is still the problem of

adding new users. Every phone would have to be recalled and updated with the new user.

Then there is issue of security. If one of these phones is compromised, the adversary now has
access to the identification protocol, and worse, multiple identification packages of known users.
It could be trivial for an attacker the modify this system and defeat its identification suite, thus

giving an attacker spoofed access to the network, albeit limited.

Finally, if we want this system to be passive, we would need to install software that runs in the
kernel space of the phone, since the software would need to have access to the microphone at
all times. While this is certainly possible with the appropriate software development kit (SDK)
it would mean for each type of phone, looking at both hardware and software, and developing a
new voice sampling application with the appropriate SDK. This would tie the implementation
to a specific hardware/software platform which seems undesirable as it limits our choices in the

communications hardware we can use.

This chapter has explored one system where user-device binding can be used to provide refer-

ential transparency. How the system might be used in practice is explored in the next chapter.
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CHAPTER 5:
Use Cases for Referentially-transparent Calling
Service

A system for providing a referentially-transparent calling service was described in Chapter 4. In
this chapter, two specific use cases for the service are examined, one military, the other civilian.
How the system would be deployed in each case and whether improvements are needed to

support them will be discussed.

5.1 Military Use Case

One of the driving use cases for the system has been in a military setting. The system’s prop-
erties, as discussed in Chapter 4, were in fact developed with military applications in mind. Of
interest here is deployment of the system at the Marine platoon level where the service would

be used by roughly 100 users for combat operations as well as search and rescue.

Imagine a Marine platoon deployed to an area with little public infrastructure. They need to
set up communications quickly to begin effective operations. First, they would install their
radio base station within a fire-base or area that is secure. All servers associated with the base
station would likewise be stored within a safe area. The call and personal name servers would
be installed behind the base station. As Marines come to the base for operations, their voices
would be recorded via a trusted handheld device or with a microphone and laptop. MAREF,

co-located with the Call server, would then train on these voice samples.

As Marines go on patrol and call each other over the radio network, their voices are constantly
sampled by the Call server and analyzed by MARF. The Personal Name server is updated ac-
cordingly with a fresh binding that maps a user to a cell phone number. This process is ongoing
and occurs in the background. Along with this update, other data may be stored on the Name
server such a GPS data and current mission. This allows a commander, say the Platoon Leader
at the fire-base, to monitor the locations of Marines on patrol, and to get a picture of their situa-
tion by monitoring overall communications on the Call server. Since the Platoon Leader would
have access to the Call server, mission updates (e.g. a change in patrol routes, mission objective,
etc.) could be managed there as well. With the Personal Name system, alerts could be made by

simply calling platoonl or squadl.platoonl for example.
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At some point, the members of a platoon may engage in battle which could lead to lost or
damaged cell phones. Any phones that remain can be used by the Marines to automatically
refresh their cell phone bindings on the Name server via MAREF. If a squad leader is forced to
use another cell phone then the Call server will update the Name server with the leader’s new
cell number automatically. Calls to the squad leader now get sent to the new number without

ever having to know the new number.

Marines may also get separated from the rest of their squad for many reasons. They may even
be wounded or incapacitated. The Call and Name servers can aid in the search and rescue.
As a Marine calls in to be rescued, the Name server at the firebase has their GPS coordinates.
Furthermore, MARF has identified the speaker as a known Marine. Both location and identity
have been provided by the system. The Call server can even indicate from which Marines
there has not been any communications recently, possibly signalling trouble. For instance, the
platoon leader might be notified after a firefight that three Marines have not spoken in the past
five minutes. That might prompt a call to them for more information on their status.

5.2 Civilian Use Case

The system was designed with the flexibility to be used in any environment where people need
to communicate with each other. The system is flexible enough to support disaster response
teams. An advantage to using this system in a civilian environment is that it could be stood
up in tandem with existing civilian telecommunications infrastructure. This would allow for
immediate operations in the event of a disaster as long as cellular towers are operating. Each
civilian cell tower, or perhaps a geographic group of towers, could be serviced by a cluster of
Call servers. Ideally there would also be redundancy, or meshing, of the towers so that if a Call

server went down, there would be a backup for the orphaned cell towers.

Call servers might also be organized in a hierarchical fashion as was described in Chapter 1. For
instance, there might be a Call server for the North Fremont area. Other servers placed in local
areas could be part of a larger group, say Monterey Bay. This, with other regional servers could
be grouped with SF' Bay which would be part of Northern California, etc. This hierarchical
structure would allow for a state disaster coordinator to direct-dial the head of an affected re-
gion. For example, one could dial boss .nfremont .mbay.sfbay.nca. Though work has
been done to extend communications systems by way of portable, ad-hoc wide-area networks
(WANS) [23] for civilian disaster response, the ability for state-level disaster coordinators to

immediately reach people on the ground using the current civilian phone infrastructure is un-
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precedented in U.S. disaster response.

For the purpose of disaster response, it may be necessary to house the Call servers in a hard-
ened location with backup power. Unfortunately, cell towers are far more exposed and cannot
be protected this way and hence they may become inoperable due to damage or loss of power.
However, on the bright side, telcos have a vested interest in getting their systems up as soon as
possible following a disaster. A case in point is the letter sent to the FCC from Cingular Com-
munications following Hurricane Katrina in which the company acknowledges the importance

of restoring cellular communications:

The solutions are: generators to power the equipment until commercial power is
restored, fuel to power the generators, coordination with local exchange carriers to
restore the high speed telecommunications links to the cell sites, microwave equip-
ment where the local wireline connections cannot be restored, portable cell sites
to replace the few sites typically damaged during the storm, an army of techni-
cians to deploy the above mentioned assets, and the logistical support to keep the

technicians fed, housed, and keep the generators, fuel, and equipment coming.[24]

Katrina never caused a full loss of cellular service and within one week most of the service
had been restored [24]. With dependence on the cellular providers to work in their interest to
restore cell service, along with implementation of an Emergency Use Only cell-phone policy in

the hardest hit areas, the referentially-transparent call system would be fairly robust.

MAREF could be trained with disaster-response personnel via the Call server. As part of respon-
der preparation, local disaster response personnel would already be known to the system. As the
disaster becomes unmanageable for local responders, state government, and possibly national
assets, would be called into the region. As they move in, their pre-recorded voice samples,
stored on their respective servers, would be pushed to MARF via the Call server. In the worst
case, these samples would be brought on a CD-ROM disc or flash drive to be manually loaded
onto the Call server. As their samples are loaded onto the new servers, their IDs would contain
their Fully Qualified Personal Name (FQPN). So when Sally is identified speaking on a device
in the Seventh Ward of New Orleans, the FQPN of sally.cell.tech.usace.us gets

bound to her current device as does sally.seven.ward.no.la.

The disaster-response use case relies heavily on integration with civilian communications sys-

tems. Currently no such integration exists. There are not only technical hurdles to overcome but
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political ones as well. Currently the Department of Homeland Security is looking to build-out
a national 700 MHz communications network [25]. Yet, James Arden Barnett, Jr., Chief of the
Public Safety and Homeland Security Bureau, argues that emergency communications should
link into the new 4G networks being built [26], showing that the FCC is really beginning to

address federal communications integration with public infrastructure.

The use case also relies on the ability to shut off non-emergency use of the cell phone network.
Though the ability to shut off non-emergency calling currently does not exist, calling priority
systems are in place [27]. Currently, government officials who have been issued a Government
Emergency Telecommunications Systems (GETS) card may get priority in using the public
switched network (PSN)[28]. Similarly, the Wireless Priority Service (WPS) has also been
setup by the National Communications Systems (NCS) agency. Both systems proved effective
during Hurricane Katrina [29] and show that cell phone use for emergency responders is a

reliable form of communication after a natural disaster.
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CHAPTER 6:
Conclusion

This thesis has not only shown the viability of user recognition with voice as the biometric,
but has shown how it can be effectively used for both combat and civilian applications. We
have looked at the technology that comprises and the current research being done on speaker
recognition. We have examined how this technology can be used in a software package, such as
MAREF, to have practical results with speaker recognition. We examined how speaker recogni-
tion with MAREF could fit within a specific system to allow for passive user binding to devices.
Finally in the previous chapter we examined what deployment of these systems would look like

with regards to both military and civilian environments.

Speaker recognition is the most viable biometric for user-to-device binding due to its passivity
and its ubiquitous support on all voice communications networks. This thesis has laid out a
viable system, worthy of further research. Both Chapters 3 and 4 show the effectiveness of this
system and that it is indeed possible to construct. Chapter 5 demonstrated that, in the abstract,
this system can be used in both a military and civilian environment with a high expectation of

SuUcCCess.

6.1 Road-map of Future Research

This thesis focused on using speaker recognition to passively bind users to their devices. This
system is not only comprised of a speaker recognition element, but a Bayesian network dubbed
BeliefNet. Discussion of the network comprised the use of other inputs for the BeliefNet, such

as geolocation data.

Yet, as discussed in Chapter 4 no such BeliefNet has been constructed. There is a significant
amount of research that needs to be done in this area to decide on the ideal weights of all our
inputs and how their values effect each other. Successful research has been done at using such

a Bayesian network for improving speech recognition with both audio and video inputs [30].

So, far we have only discussed MAREF as the only input into our BeliefNet, but, what other data
could we feed into it? We discussed in both Chapters 4 and 5, feeding in other data, such as
the geo-location data from the cell phone. But there are many areas of research to enhance our

system by way of the BeliefNet.
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Captain Peter Young, USMC, has done work at the Naval Postgraduate School to test the effec-
tiveness of detecting motion from the ground vibrations caused by walking using the accelerom-
eters on the Apple iPhone [31]. Further work could be done to use this same technology to detect
and measure human gait. As more research is done of how effective gait is as a biometric, we
can imagine how the data from the accelerometers of the phone, along with, geo-location, and
of course, voice, could all be fed into the BeliefNet to make its associations of users-to-device

more accurate.

Along with accelerometers found in most smartphones, it is almost impossible to find a cell
phone without a built in camera. The newest iPhone to market actually has a forward facing
camera, that is, as one uses the device, they can have the camera focus on their face. Already
work has been done focusing on the feasibility of face recognition on the iPhone [32]. So

leveraging this work we have yet another information node on our BeliefNet.

As discussed in Chapter 3, the biggest shortcoming we currently have is that of MARF issuing
false positives. Continued research must be done to allow to narrow MARF’s thresholds for a

positive identification.

As also discussed in Chapter 3, more work needs to be done on MARF’s ability to process a
large speaker databases, say on the order of several hundred. If the software cannot cope with
such a large speaker group, is there possible ways the thread MARF to examine a smaller set?

Would this type of system need to be distributed over multiple disks, computers?

6.2 Advances from Future Technology

Technology is constantly changing. This can most obviously be seen with the advances in
smartphones over in that last three years. The original iPhone was a 32-bit RISC ARM running
at 412MHz, supporting 128MB of RAM, and a two megapixel camera. One of the newest
smartphones, the HTC Desire, comes with a 1 GHz Snapdragon processor, an AMD Z430
graphics processing unit (GPU), 576 MB of RAM, and a five megapixel camera with autofocus,
LED flash, face detection, and geotagging in picture metadata. No doubt, the Desire will be
obsolete as of this reading. It is clear that as these devices advance, they could take the burden
off the system described in Chapter 4 by allowing the phone to do more processing on-board
with the phone’s own organic systems. These advances in technology would not only change

the design of the system, but could possibly positively affect performance.

There could also be advances in digital signal processing (DSP) that would allow the func-
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tions of MAREF to run directly in hardware. Already research has been done by the Wearable
Computer Lab in Zurich Switzerland on using a DSP system that can be worn during daily
activities for speaker recognition [33]. Given the above example of the technological advances
of cell phones, it is not inconceivable that such a system of DSPs could exist within a future
smartphone. Or, more likely, this DSP system could be co-located with the servers for our

user-to-device binding system, alleviating the computational requirements for running MARF.

6.3 Other Applications
The voice recognition testing in this thesis could be used in other applications besides user-to-
device binding. Since we have demonstrated the initial effectiveness of MAREF in identifying

speakers, it is possible to expand this technology to many types of telephony products.

We could imagine its use in a financial bank call center. One would just need to call the bank,
have their voice sampled, then could be routed to a customer service agent who could verify the
user. All this could be done without ever having the user input sensitive data such as account
or social security numbers. This is an idea that has been around for sometime[34], but an

application such as MARF may bring it to fruition.
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APPENDIX A:
Testing Script

#!/bin/bash

Batch Processing of Training/Testing Samples
NOTE: Make take quite some time to execute

Copyright (C) 2002 — 2006 The MARF Research and Development Group

Converted from tcsh to bash by Mark Bergem

HOH OFH W OH [ I B W

$Header: /cvsroot/marf/apps/SpeakerldentApp/testing .sh,v 1.37 2006/01/15
20:51:53 mokhov Exp $

H*

Set environment variables, if needed

export CLASSPATH=$CLASSPATH:.:/ usr/lib/marf/marf.jar
export EXTDIRS

#
# Set flags to use in the batch execution
#

java="java.—ea.—Xmx512m”
#set debug = "—debug”
debug=""

graph=""

#graph="—graph”
#spectrogram="—spectrogram”

9999

spectrogram=
if [ $1 == "—reset” ];

then
echo "Resetting.Stats ...
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fi

if [ $1
then

$java SpeakerldentApp —reset

exit 0

== ”—retrain” ];
s

echo "Training ...’

# Always reset sta

ts before retraining the whole thing

$java SpeakerldentApp —reset

for prep in —norm —boost —low —high —band —highpassboost —raw —endp

do

for feat in —fft —lpc —randfe —minmax —aggr

do

fo
do

Here we specify which classification modules to
use for

training . Since Neural Net wasn’t working the
default

distance training was performed; now we need to
distinguish them

here. NOTE: for distance classifiers it’s not
important

which exactly it is, because the one of generic
Distance is used.

Exception for this rule is Mahalanobis Distance ,
which needs

to learn its Covariance Matrix.

r class in —cheb —mah —randcl —nn

echo ”Config:_$prep_S$feat_$class.
$spectrogram._$graph_$debug”
date

# XXX: We cannot cope gracefully right now
with these combinations —— too many

# links in the fully—connected NNet, so run
out of memory quite often; hence,

# skip it for now.
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done

done
fi

echo "Testing ...”

Et) 99

if [ ”$class” == ”—nn” ]; then

if [ "$feat” == "—fft” ] || [ ”$feat” ==
"—randfe” ] || [ ”$feat” == "—aggr”
1
then
echo ”skipping...”
continue
fi

fi

time $java SpeakerldentApp ——train training
—samples $prep $feat $class $spectrogram

$graph $debug

done

for prep in —morm —boost —low —high —band —highpassboost —raw —endp

do

for feat in —fft —lpc —randfe —minmax —aggr

do

for class in —eucl —cheb —mink —mah —diff —randcl —nn

do

echo ”Config: _$prep.$feat_$class._$spectrogram.
$graph._$debug”
date

29

echo

i)

# XXX: We cannot cope gracefully right now with
these combinations —— too many

# links in the fully—connected NNet, so run of
memeory quite often, hence

# skip it for now.

if [ ”$class” == ”—nn” ]; then
if [ ”$feat” == "—fft” ] || [ ”$feat” == "—
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randfe” ] || [

continue
fi
fi

”$feat” == "—aggr” ]; then
echo ”skipping ...”

time $java SpeakerldentApp —batch—ident testing—

samples $prep $feat
$debug

Lt}

echo

$class

$spectrogram $graph

i)

done
done
done

echo ”Stats:”

$java SpeakerldentApp —stats > stats.txt

$java SpeakerldentApp —best—score > best—score.

date > stats —date.tex

echo "Testing _Done”

exit 0

# EOF
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